관리 메뉴

커리까지

[백준] 2211번 네트워크 복구 파이썬 본문

알고리즘/풀이

[백준] 2211번 네트워크 복구 파이썬

목표는 커리 2022. 12. 25. 12:16
728x90
SMALL

문제

N(1 ≤ N ≤ 1,000)개의 컴퓨터로 구성된 네트워크가 있다. 이들 중 몇 개의 컴퓨터들은 서로 네트워크 연결이 되어 있어 서로 다른 두 컴퓨터 간 통신이 가능하도록 되어 있다. 통신을 할 때에는 서로 직접 연결되어 있는 회선을 이용할 수도 있으며, 회선과 다른 컴퓨터를 거쳐서 통신을 할 수도 있다.

각 컴퓨터들과 회선은 그 성능이 차이가 날 수 있다. 따라서 각각의 직접 연결되어 있는 회선을 이용해서 통신을 하는데 걸리는 시간이 서로 다를 수 있다. 심지어는 직접 연결되어 있는 회선이 오히려 더 느려서, 다른 컴퓨터를 통해서 통신을 하는 것이 더 유리할 수도 있다. 직접 연결되어 있는 회선을 사용할 경우에는 그 회선을 이용해서 통신을 하는 데 드는 시간만큼이 들게 된다. 여러 개의 회선을 거치는 경우에는 각 회선을 이용해서 통신을 하는 데 드는 시간의 합만큼의 시간이 걸리게 된다.

어느 날, 해커가 네트워크에 침입하였다. 네트워크의 관리자는 우선 모든 회선과 컴퓨터를 차단한 후, 해커의 공격을 막을 수 있었다. 관리자는 컴퓨터에 보안 시스템을 설치하려 하였는데, 버전 문제로 보안 시스템을 한 대의 슈퍼컴퓨터에만 설치할 수 있었다. 한 컴퓨터가 공격을 받게 되면, 네트워크를 통해 슈퍼컴퓨터에 이 사실이 전달이 되고, 그러면 슈퍼컴퓨터에서는 네트워크를 이용해서 보안 패킷을 전송하는 방식을 사용하기로 하였다. 준비를 마친 뒤, 관리자는 다시 네트워크를 복구하기로 하였다. 이때, 다음의 조건들이 만족되어야 한다.

  1. 해커가 다시 공격을 할 우려가 있기 때문에, 최소 개수의 회선만을 복구해야 한다. 물론, 그렇다면 아무 회선도 복구하지 않으면 되겠지만, 이럴 경우 네트워크의 사용에 지장이 생기게 된다. 따라서 네트워크를 복구한 후에 서로 다른 두 컴퓨터 간에 통신이 가능하도록 복구해야 한다.
  2. 네트워크를 복구해서 통신이 가능하도록 만드는 것도 중요하지만, 해커에게 공격을 받았을 때 보안 패킷을 전송하는 데 걸리는 시간도 중요한 문제가 된다. 따라서 슈퍼컴퓨터가 다른 컴퓨터들과 통신하는데 걸리는 최소 시간이, 원래의 네트워크에서 통신하는데 걸리는 최소 시간보다 커져서는 안 된다.

원래의 네트워크에 대한 정보가 주어졌을 때, 위의 조건을 만족하면서 네트워크를 복구하는 방법을 알아내는 프로그램을 작성하시오.

입력

첫째 줄에 두 정수 N, M이 주어진다. 다음 M개의 줄에는 회선의 정보를 나타내는 세 정수 A, B, C가 주어진다. 이는 A번 컴퓨터와 B번 컴퓨터가 통신 시간이 C (1 ≤ C ≤ 10)인 회선으로 연결되어 있다는 의미이다. 컴퓨터들의 번호는 1부터 N까지의 정수이며, 1번 컴퓨터는 보안 시스템을 설치할 슈퍼컴퓨터이다. 모든 통신은 완전쌍방향 방식으로 이루어지기 때문에, 한 회선으로 연결된 두 컴퓨터는 어느 방향으로도 통신할 수 있다.

출력

첫째 줄에 복구할 회선의 개수 K를 출력한다. 다음 K개의 줄에는 복구한 회선을 나타내는 두 정수 A, B를 출력한다. 이는 A번 컴퓨터와 B번 컴퓨터를 연결하던 회선을 복구한다는 의미이다. 출력은 임의의 순서대로 하며, 답이 여러 개 존재하는 경우에는 아무 것이나 하나만 출력하면 된다.

예제 입력 1
4 5
1 2 1
1 4 4
1 3 2
4 2 2
4 3 3
예제 출력 1
3
1 2
3 1
4 2

제출 답안

  • 최단거리를 갱신할 때 마다 그 노드를 저장하면 된다.
'''
1. 아이디어
- 우선 최단 거리 구하기
2. 시간 복잡도
ElogV
- 범위가 없음
3. 변수
- egde [][]
- dist []
- short_path []
'''

import sys, heapq
input = sys.stdin.readline
INF = sys.maxsize

n, m = map(int, input().split())

edge = [[] for _ in range(n+1)]
for _ in range(m):
    a, b, w = map(int, input().split())
    edge[a].append((w, b))
    edge[b].append((w, a))

def dijkstra(start):
    short_path = [0 for _ in range(n+1)]
    dist = [INF] * (n+1)
    dist[start] = 0
    heap = [(0, start)]
    while heap:
        ew, ev = heapq.heappop(heap)
        if dist[ev] < ew:continue
        for nw, nv in edge[ev]:
            if ew + nw < dist[nv]:
                dist[nv] = ew + nw
                short_path[nv] = ev
                heapq.heappush(heap, (ew + nw, nv))
    return short_path
short_path = dijkstra(1)
print(n-1)
for i in range(2, n+1):
    print(i, short_path[i])
728x90
LIST
Comments